Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
Sci Total Environ ; 885: 163827, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2309679

RESUMEN

Natural ventilation is an energy-efficient design approach to reduce infection risk (IR), but its optimized design in a coach bus environment is less studied. Based on a COVID-19 outbreak in a bus in Hunan, China, the indoor-outdoor coupled CFD modeling approach is adopted to comprehensively explore how optimized bus natural ventilation (e.g., opening/closing status of front/middle/rear windows (FW/MW/RW)) and ceiling wind catcher (WCH) affect the dispersion of pathogen-laden droplets (tracer gas, 5 µm, 50 µm) and IR. Other key influential factors including bus speed, infector's location, and ambient temperature (Tref) are also considered. Buses have unique natural ventilation airflow patterns: from bus rear to front, and air change rate per hour (ACH) increases linearly with bus speed. When driving at 60 km/h, ACH is only 6.14 h-1 and intake fractions of tracer gas (IFg) and 5 µm droplets (IFd) are up to 3372 ppm and 1394 ppm with ventilation through leakages on skylights and no windows open. When FW and RW are both open, ACH increases by 43.5 times to 267.50 h-1, and IFg and IFd drop rapidly by 1-2 orders of magnitude compared to when no windows are open. Utilizing a wind catcher and opening front windows significantly increases ACH (up to 8.8 times) and reduces IF (5-30 times) compared to only opening front windows. When the infector locates at the bus front with FW open, IFg and IFd of all passengers are <10 ppm. More droplets suspend and further spread in a higher Tref environment. It is recommended to open two pairs of windows or open front windows and utilize the wind catcher to reduce IR in coach buses.


Asunto(s)
COVID-19 , Humanos , Vehículos a Motor , Viento , Respiración , China , Ventilación
2.
Build Environ ; 220: 109160, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1850735

RESUMEN

The influencing mechanism of droplet transmissions inside crowded and poorly ventilated buses on infection risks of respiratory diseases is still unclear. Based on experiments of one-infecting-seven COVID-19 outbreak with an index patient at bus rear, we conducted CFD simulations to investigate integrated effects of initial droplet diameters(tracer gas, 5 µm, 50 µm and 100 µm), natural air change rates per hour(ACH = 0.62, 2.27 and 5.66 h-1 related to bus speeds) and relative humidity(RH = 35% and 95%) on pathogen-laden droplet dispersion and infection risks. Outdoor pressure difference around bus surfaces introduces natural ventilation airflow entering from bus-rear skylight and leaving from the front one. When ACH = 0.62 h-1(idling state), the 30-min-exposure infection risk(TIR) of tracer gas is 15.3%(bus rear) - 11.1%(bus front), and decreases to 3.1%(bus rear)-1.3%(bus front) under ACH = 5.66 h-1(high bus speed).The TIR of large droplets(i.e., 100 µm/50 µm) is almost independent of ACH, with a peak value(∼3.1%) near the index patient, because over 99.5%/97.0% of droplets deposit locally due to gravity. Moreover, 5 µm droplets can disperse further with the increasing ventilation. However, TIR for 5 µm droplets at ACH = 5.66 h-1 stays relatively small for rear passengers(maximum 0.4%), and is even smaller in the bus middle and front(<0.1%). This study verifies that differing from general rooms, most 5 µm droplets deposit on the route through the long-and-narrow bus space with large-area surfaces(L∼11.4 m). Therefore, tracer gas can only simulate fine droplet with little deposition but cannot replace 5-100 µm droplet dispersion in coach buses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA